Operations on M-Convex Functions on Jump Systems
نویسندگان
چکیده
A jump system is a set of integer points with an exchange property, which is a generalization of a matroid, a delta-matroid, and a base polyhedron of an integral polymatroid (or a submodular system). Recently, the concept of M-convex functions on constant-parity jump systems is introduced by Murota as a class of discrete convex functions that admit a local criterion for global minimality. M-convex functions on constant-parity jump systems generalize valuated matroids, valuated delta-matroids, and M-convex functions on base polyhedra. This paper reveals that the class of M-convex functions on constant-parity jump systems is closed under a number of natural operations such as splitting, aggregation, convolution, composition, and transformation by networks. The present results generalize hitherto-known similar constructions for matroids, delta-matroids, valuated matroids, valuated delta-matroids, and M-convex functions on base polyhedra.
منابع مشابه
A Steepest Descent Algorithm for M-Convex Functions on Jump Systems
The concept of M-convex functions has recently been generalized for functions defined on constant-parity jump systems. The b-matching problem and its generalization provide canonical examples of M-convex functions on jump systems. In this paper, we propose a steepest descent algorithm for minimizing M-convex functions on constant-parity jump systems.
متن کاملInduction of M-convex functions by linking systems
Induction (or transformation) by bipartite graphs is one of the most important operations on matroids, and it is well known that the induction of a matroid by a bipartite graph is again a matroid. As an abstract form of this fact, the induction of a matroid by a linking system is known to be a matroid. M-convex functions are quantitative extensions of matroidal structures, and they are known as...
متن کاملPolynomial-Time Algorithms for Linear and Convex Optimization on Jump Systems
The concept of jump system, introduced by Buchet and Cunningham (1995), is a set of integer points with a certain exchange property. In this paper, we discuss several linear and convex optimization problems on jump systems and show that these problems can be solved in polynomial time under the assumption that a membership oracle for a jump system is available. We firstly present a polynomial-ti...
متن کاملOn Fejér Type Inequalities for (η1,η2)-Convex Functions
In this paper we find a characterization type result for (η1,η2)-convex functions. The Fejér integral inequality related to (η1,η2)-convex functions is obtained as a generalization of Fejér inequality related to the preinvex and η-convex functions. Also some Fejér trapezoid and midpoint type inequalities are given in the case that the absolute value of the derivative of considered function is (...
متن کاملM-Convex Functions on Jump Systems: A General Framework for Minsquare Graph Factor Problem
The METR technical reports are published as a means to ensure timely dissemination of scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, notwithstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Discrete Math.
دوره 21 شماره
صفحات -
تاریخ انتشار 2007